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Abstract

We give an exposition of two theorems relating to cubic surfaces in P3
C – the existence

of 27 lines and its realization as the blowup of P2
C in six points. We discuss the

connections between these two theorems.

1 Introduction

In this paper, we will give an exposition of the following two facts about the cubic surface.

Theorem. Let X ⊆ P3
C be a smooth cubic surface. S contains exactly 27 lines.

Theorem. Let X ⊆ P3
C be a smooth cubic surface. S can be realized as the blowup of P2

C at
six points, no three in a line and no six in a conic.

We work over C and follow closely the exposition of [1], with reference to [4, 5].

2 The 27 Lines on a Cubic Surface

Let us start with the following example.

Proposition 2.1. The surface X = V(w3 + x3 + y3 + z3) ⊆ P3
C contains exactly 27 lines.

The surface X = V(w3 + x3 + y3 + z3) ⊆ P3
C is known as the Fermat cubic surface.

Proof. Recall from [2, Ex. 1.6] that any ordered tuple of 5 points are projectively equivalent
in P3

C. Note that a line in P3
C is determined by the intersection of two hyperplanes say

V(a′0w+a′1x+a
′
2y+a

′
3z, b

′
0w+ b′1x+ b

′
2y+ b

′
3z) ⊆ P3

C. Thus without loss of generality, we can
change coordinates such that our hyperplanes are of the form w−a2y−a3z and x−b2y−b3z
that preserves the coordinates of X.

Two lines lie on X if and only if

(a2y + a3z)
3 + (b2y + b3z)

3 + y3 + z3 = 0
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as a polynomial in C[y, z]. Expanding and comparing coefficients, we see that the above
polynomial vanishes if and only if the following conditions hold:

a32 + b32 + 1 = 0 (†)
a33 + b33 + 1 = 0 (††)
a22a3 + b22b3 = 0 (‡)
a2a

3
3 + b2b

2
3 = 0 (‡‡)

We now want to show that at least one of a2, a3, b2, b3 is zero. Suppose to the contrary that
all are nonzero. Consider the square of (‡) divided by (‡‡) that gives us a32 = b32 which
contradicts (†). So at least one of a2, a3, b2, b3 is zero.

Up to renumbering say a2 = 0. With the equations above, we can compute in sucession
that b32 = −1 using (†), b3 = 0 by (‡), and a33 = −1 by (††). Indeed if a2, a3, b2, b3 satisfies
these equations then the intersection of the hyperplanes are fully contained in the cubic
surface – namely is a line in the cubic.

Let ζ be the third root of unity. Allowing permutations of the coordinates we can see
that there are nine lines for each of the three families of hyperplane intersections

V(x+ yζ i, w + zζj) 0 ≤ i, j ≤ 2

V(z + xζ i, w + yζj) 0 ≤ i, j ≤ 2

V(z + yζ i, w + xζj) 0 ≤ i, j ≤ 2

which we must now show are distinct. We can check that the first collection of lines is
of the form [−sζj : −tζ i : t : s], [s : t] ∈ P1

C, the second collection of lines is of the
form [−sζj : t : s : −tζ i], [s : t] ∈ P1

C, and the third collection of lines are of the form
[−sζj : s : t : −tζ i], [s : t] ∈ P1

C. We can see these are distinct for different choices of i, j.

Indeed one can compute the following.

Corollary 2.2. Let X be the Fermat cubic surface. For any line ℓ ⊂ X there are ten other
lines in X intersecting ℓ. Given two disjoint lines ℓ, ℓ′ ⊂ X there are exactly five other lines
in X meeting both ℓ, ℓ′.

We wish to genearalize this. By a parameter counting argument, a homogeneous cubic
polynomial in C[w, x, y, z] is determined by 20 coefficients. Its vanishing locus is determined
by these 20 coefficients up to scale, hence the space of cubic surfaces is P19

C . By the hypotheses
in the theorem stated in our introduction, we are considering smooth cubic surfaces. Here,
we note that a singularity is a closed condition in the space of cubic surfaces – namely that
the set of singular cubic surfaces is defined by the vanishing of the Jacobian determinant,
hence is a Zariski closed subset of P19

C . Equivalently, the space of smooth cubic surfaces is
the complement of P19

C by this Zariski closed set and is thus some dense open subset U ⊆ P19
C .

Moreover, recall that a line in P3
C is the projectivization of a 2-plane in C4. Namely lines

in P3
C are points of the Grassmanian Gr(2, 4). We can thus consider the following incidence

correspondence:
Φ = {(X, ℓ)|ℓ ⊂ X} ⊆ U ×Gr(2, 4)
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We note that Φ has a natural forgetful map π taking (X, ℓ) to X. The number of lines
contained in X is thus the size of the fiber over π. The rest of the proof shall proceed,
counterintuitively, by a topological argument. We show the following two lemmas.

Lemma 2.3. Let Φ be the incidence correspondence as above. Φ is closed in the Zariski
topology of U ×Gr(2, 4).

Proof. Let (X, ℓ) ∈ Φ. Up to the action of PGL4(C) we can assume that L is given by the
equation y = z = 0. Locally around this point ℓ ∈ Gr(2, 4) a line would be interpolating the
points given by the rows of the following matrix:[

1 0 a2 a3
0 1 b2 b3

]
for a2, a3, b2, b3 ∈ C. Note here that a2 = a3 = b2 = b3 = 0 corresponds to our line ℓ. Let f be
the degree three homogeneous polynomial in 4 variables such that V(f) = X. If (X, ℓ) ∈ Φ
then we have that the span of the two vectors contained entirely within the cubic surface

f(s[1 : 0 : a2 : a3] + t[0 : 1 : b2 : b3]) = 0,∀[s : t] ∈ P1
C.

Let cα be the multi-indexed coefficients of f , namely α runs over all quadruples (α0, α1, α2, α3)
where

∑3
i=0 αi = 3 and 0 ≤ αi ≤ 3. Given the above, we can write∑

α

cαs
α0tα1(sa2 + tb2)

α2(sa3 + tb3)
α3 = 0,∀[s : t] ∈ P1

C.

We can now expand and reorder terms writing the above polynomial as a homogeneous degree
three polynomial in variables s, t and coefficients a0, . . . , a3; b0, . . . , b3; cα. Let us write these
coefficient polynomials as F (a, b; cα). So we have

3∑
k=0

skt3−kFk(a, b; cα) = 0,∀[s : t] ∈ P1
C.

But since this has to vanish for all [s : t] ∈ P1
C, the Fk(a, b; cα) must vanish simultaneously, but

this is the vanishing of a collection of bihomogeneous polynomials in the variables (a, b; cα)
of bidegree (3, 1) on the product U ×Gr(2, 4) showing our claim.

Now we want to show that the equations F0, . . . , F3 that these four equations determine
the values (a2, a3, b2, b3) ∈ C4 locally around the origin in the analytic topology near cα. To
do this, we will need the complex implicit function theorem. Let us recall the statement.
Let fj(w, z) for 1 ≤ j ≤ m be functions in varibles (w, z) and analytic in a neighbhorhood
(w0, z0) ∈ Cn × Cm such that fj(w0, z0) = 0 for all 1 ≤ j ≤ m have a uniquely determined
analytic solution Cm → Cn such that w(z0) = w0. In other words, the theorem tells us that
if the Jacobian determinant is nonvanishing the number of lines is locally constant in a small
neighbhorhood of a given point of the incidence correspondence. It thus suffices to show that
the Jacobian matrix ∂(F0,F1,F2,F3)

∂(a2,a3,b2,b3)
is invertible at a2 = a3 = b2 = b3 = 0.
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Lemma 2.4. Let Φ be the incidence correspondence as above. In the induced Euclidean
(analytic) topology, Φ is locally the graph of a continuously differentiable function U →
Gr(2, 4).

Proof. The implicit funciton theorem tells us that Φ is locally a graph if and only if the
jacobian of the functions F is nonvanishing. Let us compute the Jacobian matrix at a2 =
a3 = b2 = b3 = 0 in the variables a2, a3, b2, b3. The first column consists is of the form
(∂a2F0, ∂a3F0, ∂b2F0, ∂b3F0) and

∂

∂a2

(
3∑

k=0

skt3−kFk

)
|a2=a3=b2=b3=0 =

∂

∂a2
f(s, t, sa2 + tb2, sa3 + tb3)

= s
∂f

∂y
(s, t, 0, 0)

recalling that f is the homogeneous cubic in C[w, x, y, z] whose vanishing locus is X. Re-
peating this computation of partial derivatives we can see that

J =

 | | | |
s∂f
∂y
(s, t, 0, 0) s∂f

∂z
(s, t, 0, 0) t∂f

∂y
(s, t, 0, 0) t∂f

∂z
(s, t, 0, 0)

| | | |


which is singular if and only if there is some (λ, µ, λ′, µ′) such that the columns are linearly
dependent. Namely

(λs+ µt)
∂f

∂y
(s, t, 0, 0) + (λ′s+ µ′t)

∂f

∂z
(s, t, 0, 0) = 0.

But recall from the fundamental theorem of algebra that a homogeneous polynomial in
two variables s, t always decomposes as linear factors. So that means that ∂f

∂y
(s, t, 0, 0) and

∂f
∂z
(s, t, 0, 0) must have a common linear factor. So there must be a point p on the line

s[1 : 0 : 0 : 0] + t[0 : 1 : 0 : 0] for all [s : t] ∈ P1
C such that ∂f

∂y
(p) = ∂f

∂z
(p) = 0. So all partial

derivatives of f vanish at p indicating X is singular at p, a contradiction as X is smooth by
hypothesis.

This allows us to prove our theorem.

Proof of Theorem. Let X ∈ U be a smooth cubic surface. Let ℓ ∈ P3
C be an arbitrary line.

We consider two cases.
Suppose ℓ ⊂ X. Lemma 2.4 implies that there is an open neighbhorhood of (X, ℓ) which

we denote Vℓ×Wℓ ⊆ U ×Gr(2, 4) on which the incidence correspondence Φ is the graph of a
continuously differentiable function. In particular, any cubic in Vℓ contains exactly one line
in Wℓ.

Suppose ℓ ̸⊂ X. There is an open neighborhood of (X, ℓ) which we denote Vℓ ×Wℓ ⊆
U × Gr(2, 4) such that no cubic in Vℓ contains any line since the incidence correspondence
Φ is closed by Lemma 2.3.

Recalling that X is fixed we let ℓ vary. Since Gr(2, 4) is a projective variety, it is compact,
and there are thus finitely many sets Wℓ that form a finite open cover of Gr(2, 4). Let for
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such a collection of Wℓ, consider their intersection W and the corresponding intersection of
Vℓs which we denote V ⊆ U . This gives us V ×W ⊆ U × Gr(2, 4) on which the number
of lines on a cubic surface in V is locally constant, the number of lines on the fixed cubic
surface X. But since X was fixed arbitrarily, the number of lines on a cubic surface is a
locally constant function on U .

To show that this is globally constant, it suffices to show that U is connected as a
topological space. We do so by a dimension counting argument. We have already established
that U is the complement of P19

C by a Zariski closed subset. A computation of the singular
locus of cubics surfaces is defined by the common vanishing of six polynomials of degree 32
[3]. This has complex codimension at least one and hence its complement in P19

C remains
connected. Thus the number of lines is globally constant on U .

Computing partial derivatives, one can verify that the Fermat surface is smooth and is
hence contained in U . Moreover it has 27 lines as shown in Proposition 2.1. Thus by
the number of lines being constant on U , a smooth cubic surface has 27 lines proving our
theorem.

3 Birational Geometry of the Cubic Surface

We seek to give an outline of the proof of the second theorem. We must first show the
following lemma.

Lemma 3.1. Let X ⊆ P3
C be a smooth cubic surface. S is birational to P2

C.

We will describe the maps but not give an explicit coordinatewise descriptions of the
maps.

Proof. From Corollary 2.2, there exist two disjoint lines ℓ, ℓ′ contained in X. We will show
that X is birational to ℓ×ℓ′ ∼= P1

C×P1
C which is birational to P2

C with our statement following
from the transitivity of birational maps when restricting to appropriate dense open subsets.

To see a rational map X → ℓ× ℓ′ we consider that for every point p on X \ ℓ∪ ℓ′ there is
a unique line L through p intersecting ℓ, ℓ′. Take the rational map p 7→ (L ∩ ℓ, L ∩ ℓ′) which
is regular on the dense open set X \ ℓ ∪ ℓ′.

To see a rational map ℓ × ℓ′ → X for any pair of points (p, p′) we consider a line L in
P3
C interpolating both p and p′ and map it to the third point of intersection of L with X,

namely (p, p′) 7→ X ∩ L. This is regular on the set where L ̸⊆ X.

We can now give a proof of our second theorem.

Proof of Theorem. We will show that the cubic surface is the blowup of P1
C × P1

C at five
points. The fact that P1

C×P1
C blown up at five points is birational to the blowup of P2

C at six
points follows easily from the well-known fact that P1

C×P1
C blown up at a point is birational

to P2
C blown up at two points.
Consider the map ψ : X → ℓ × ℓ′ ∼= P1

C × P1
C as above. We want to show that this

map ψ is in fact a morphism. Suppose p ∈ X \ ℓ and let H ⊆ P3
C be the unique plane in

P3
C containing ℓ and p, and H ′ ⊆ P3

C be the unique plane in P3
C containing ℓ′ and p. Let

ψ : p 7→ (H ∩ ℓ′, H ′ ∩ ℓ). We can extend this to a morphism for points p on ℓ or ℓ′ by taking
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H,H ′, respectively, to be the tangent plane to X at p TpX. This extends to a well-defined
morphism X → P1

C × P1
C.

We now consider the locus where the inverse map P1
C × P1

C is not well-defined. Per the
proof of Lemma 3.1, the inverse map is not well-defined if and only if the line L interpolating
(p, p′) ∈ ℓ× ℓ′ is fully contained in X. Here recalling Corollray 2.2, these are the five lines
intersecting both ℓ, ℓ′. In this case the whole line L will be mapped to (p, p′) by ψ and that
X is locally the blowup of at this point. So X is the blowup of P1

C × P1
C in 5 points, as

desired.

4 Exceptional Divisors as Lines and Other Remarks

We now want to discuss the connections between the first and second theorem we have just
proven. In particular, how are the 27 lines on a cubic surface realized as the blowup of the
six points of P2

C. The 27 lines are realized as follows:

• The exceptional divisors of the blowup of the 6 points.

• The proper transforms of each line interpolating the two general points, of which there
are

(
6
2

)
= 15.

• The proper transforms of each conic interpolating five general points, of which there
are

(
6
5

)
= 6.

We see that
6 + 15 + 6 = 27

which are the 27 lines on the cubic surface. Through this theorem we can also deduce some
aspects of the incidence geometry of the lines on the cubic surface. In particular that each
line in the cubic surface meets

• If the line arises as the exceptional divisor of the blowup of a point say pi, then the
line lies intersects each of the strict transforms of the five lines pipj for i, j ∈ {1, . . . , 6}
distinct and each of the strict transforms of the five conics passing through pi in the
plane.

• If the line arises as the strict transform of a line through two of the blown up points pipj
then this line meets the exceptional divisors corresponding to pi and pj, the

(
4
2

)
= 6

lines interpolating two of the four remaining points {1, . . . , 6} \ {i, j}, the two conics
interpolating the two points pi and pj.

• If the line arises as the strict transform of a conic through five of the blown up points
then it meets the five exceptional divisors corresponding to each of the points the conic
interpolates as well as the strict transform of five lines through each of the five points
on the conic and the sixth remaining line.
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